Magnetic heat pump flow director
A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators.Pneumatic and electric diaphragm pumps The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump. Magnetic pumpsIn a magnetic heat pump system having a defined magnetic field, a rotor of magnetic material rotating through said magnetic field in a first direction, fluid flow passage within said rotor with heat transfer fluid contained therein, and at least one heat exchange flow path interconnected to said fluid flow passage having defined inlet and outlet ports to cool a portion of said heat transfer fluid as it passes through said system; an improvement consisting of at least one flow director installed in said fluid flow passage between said inlet and outlet ports to divert substantially all of said heat transfer fluid in a second direction opposite said first direction and through said heat exchange flow path, thereby improving the cooling efficiency of said system wherein said rotor consists of a plurality of cylindrical disc plates having spaces between each of said plates to permit passage of said heat transfer fluid. Refrigeration and space heating systems used in industry and for domestic use have relied on Freon gas-cycles. Research has shown that the release of Freon into the atmosphere deteriorates the ozone layer in the Earth's atmosphere. The ozone layer is a protective layer that shields the earth from ultraviolet rays. The resultant harmful effects from an increase in ultraviolet rays can cause serious problems such as higher incidences of skin cancer. As a result, magnetic heat pump technology has been developed as an alternative to the use of Freon gas-cycle to provide refrigeration and space heating. The magnetic heat pump has the potential of being more efficient than a compressor driven refrigerator by using less power for the same amount of cooling. A magnetic heat pump consists of a rotor of magnetic material such as gadolinium, which slowly rotates through a magnetic field formed from magnets. The type of magnets used can depend on the degree of cooling desired. For greater cooling, a super conductor magnet may be used. For lesser cooling, a permanent magnet with a weaker magnetic field may be used. The rotor has an enclosure with flow passages to allow heat transfer fluid to move through the rotor. The control of fluid flow direction through the rotor is difficult because the fluid has to flow into, through the material, and out of the material in one direction as the material is moved in the opposite direction. The magnetic heat flow direction control was accomplished by using magnetic material machined in disc shaped plates. Flow directors are placed in fixed positions around the magnetic rotor. The flow director blocks the flow forcing the flow in another direction. The flow directors are made by machining comb shaped pieces. The teeth of the pieces fit between the plates of magnetic material. The plates of the magnetic material rotate and move between the stationary teeth of the flow director. This enables the desired relative flow direction of fluid and magnetic material.
MORE NEWS
2012-01-09